
OPT++: An Object-Oriented Toolkit for Nonlinear
Optimization

J. C. Meza,R.A. Oliva∗, P.D. Hough, P.J. Williams†

December 9, 2003

Abstract

Object-oriented programming is a popular way of developing new software.
The promise of this new programming paradigm is that software developed
through these concepts will be more reliable and easier to re-use, thereby de-
creasing the time and cost of the software development cycle. This report
describes the development of a C++ class library for nonlinear optimization.
Using object-oriented techniques, this new library was designed so that the
interface is easy to use while being general enough so that new optimization
algorithms can be added easily to the existing framework.

1 Introduction

Object-oriented programming (OOP) is a popular way of developing new software.
Unlike procedural programming, which emphasizes the development of algorithms to
accomplish a specific task, object-oriented programming relies on the implementation
of new data types called objects. The promise behind this programming paradigm
is that software developed through these concepts will be more reliable and easier
to re-use in new applications, thereby decreasing the time and cost of the software
development cycle.

In this paper, we present the results of an ongoing project to develop an object-
oriented toolkit for nonlinear optimization. This toolkit was first proposed by Meza [14]
in 1992 for unconstrained optimization problems. Since that time, there have been
many other researchers that have contributed to the development and new capabili-
ties have been added over the years, including new parallel optimization methods[11],

∗Computational Research Division, Ernest Orlando Lawrence Berkeley National Laboratory,
Berkeley CA 94720. This work was supported by the Director, Office of Science, of the U.S. Depart-
ment of Energy under Contract No. DE-AC03-76SF00098.

†Computational Science and Mathematics Research, Sandia National Laboratories

1

parallel finite-difference gradient calculations[12], constrained optimization, and new
testing capabilities. In addition, the toolkit has been used to solve many problems
including molecular conformation problems, optimal control of chemical vapor depo-
sition furnaces, and a parameter identification for an extreme ultraviolet lithography
lamp model [16, 18, 15].

Many software packages have been developed to address various types of opti-
mization problems. For an excellent overview of the available optimization software
see for example [20]. Given the large number of optimization codes available, it is not
surprising that it is sometimes difficult for the user to choose a good algorithm for a
particular problem. This is especially true for the novice practitioner of optimization.
In addition, even if the methods are inherently similar, the interface to the codes can
be quite different making it difficult to experiment with various methods. To resolve
some of these issues code designers usually resort to one of two tricks: 1) force the
user to use a particular calling sequence or 2) the optimization codes are written using
reverse communication.

Neither solution is very satisfying. If the optimization algorithm requires a par-
ticular calling sequence the user is forced into writing a subroutine that will interface
between the optimizer and the function evaluator. While this is usually a straightfor-
ward task it may prove to be unwieldy and costly in certain situations. In particular,
we would like to focus on cases where the function evaluator is described by the
output of a simulation such as a finite-element analysis. For these simulation-based
optimization problems, the prescribed interface may not be general enough to encom-
pass all of the parameters required to do a simulation or it may require the user to
package any extra information in a pre-defined format.

In the second option, called reverse communication, the optimization algorithm
returns to the calling routine whenever it needs information to proceed. This infor-
mation may be a function value, a derivative, or any other data that is required by the
optimization algorithm. From the point of view of the user this is a better solution in
that it requires less coding. From the point of view of the software developer however,
the job is more difficult. Outside of the fact that this type of coding violates several
good programming practices (for example, single entry-single exit codes), the code is
also more difficult to debug.

To overcome some of these difficulties, several attempts have been made at de-
signing optimization classes. In [26] Schoenberg developed a set of classes for the
unconstrained optimization of arbitrary functions. Schoenberg describes three classes
that together choose a particular algorithm, set the tolerances, and perform the ac-
tual optimization. Nichols et al. [21] have also developed optimization classes for
linear operators in the physical sciences and specifically for linear operators arising
from geophysical inversion problems. The Tookit for Advanced Optimization [28]
(TAO) is another attempt at developing an optimization toolkit in an object-oriented
framework. Another example is the Hilbert Class Libray [9] (HCL) designed to bridge
the gap between off-the-shelf optimization software and application software that at-

2

tempts to use it. More recently, the Object-Oriented Quadratic Programming [23]
(OOQP) software package was described for the solution of convex quadratic pro-
gramming problems.

The goal of this work is to use the ideas of object-oriented programming to over-
come the obstacles mentioned above. In particular, we address the following issues:
1) better program interfaces for the user of optimization codes, 2) rapid evaluation
of several optimization codes for a given problem, 3) rapid prototyping of new opti-
mization algorithms, and 4) more re-usability of optimization components and codes.

The rest of this paper is organized as follows. In Section 2 we describe the math-
ematical problems that OPT++ is intended to address. Section 3 describes the soft-
ware issues including: a short overview of object-oriented programming, the major
classes within OPT++, the parallelization of OPT++, and the testing infrastruc-
ture developed. In Section 4 we give several examples of using OPT++ for some
applications. We conclude in Section 5 with a discussion of future work.

2 Mathematical Formulation

The problem that we are interested in solving is that of a nonlinearly constrained
optimization problem. The general form of this problem is given by:

min
x∈Rn

f(x) (1)

subject to hi(x) = 0, i = 1, . . . , p,

gi(x) ≥ 0, i = 1, . . . , m.

where x ∈ <n, and f : <n → <.
Here, both the objective function f(x) and the constraint functions hi(x) and

gi(x) are assumed to be general nonlinear functions.
For the case where there are no constraints present, there are many computational

techniques for solving problem (1). Most of these techniques can be broadly classified
as either using derivative information or being derivative-free. Under the category
of methods that use derivative information are conjugate gradient methods, quasi-
Newton methods, and Newton methods. Derivative-free methods include direct search
methods, genetic algorithms, and simulated annealing.

In the context of constrained optimization, there are many variations of the meth-
ods mentioned above. In particular, there has been considerable interest recently in
interior point methods. These methods attempt to solve problem 1 while maintain-
ing strict feasibility throughout the optimization phase. These types of methods are
particularly attractive for simulation-based optimization methods where many of the
constraints must be satisfied at all times since infeasible points usually correspond to
input parameters that are not valid for the simulation.

3

We have chosen to implement a particular variant known as a primal-dual interior-
point method proposed by El-Bakry, Tapia, Tsuchiya, and Zhang []. The basic algo-
rithm can be interpreted as damped Newton method on the perturbed Karush-Kuhn-
Tucker (KKT) conditions (using the slack variable formulation),

Fµ(x, y, z) =

∇f(x) +∇h(x)y −∇g(x)w
w − z
h(x)

g(x)− s
ZSe− µe

= 0, (2)

where (s, w, z) ≥ 0, and µ is a perturbation parameter. El-Bakry, Tapia, Tsuchiya,
and Zhang demonstrated that local and fast convergence of Newton’s method can be
retained by clever choices of perturbation and damping strategies.

3 Software Description

3.1 Object-Oriented Programming

The main concept behind object-oriented programming is data abstraction, which
is the separation of the data and the procedures for manipulating that data from
an application program. In many ways this is no different than good programming
practices that try to keep the unnecessary details of a particular code from an end-
user. The major difference in object-oriented programming is the ability to create
user-defined data types and add them to an existing language thereby facilitating data
abstraction. It is these new objects that give object-oriented programming its name.
Through these new objects a computer language can be easily extended to handle
new applications. A good example of this feature is the matrix package developed
by Davies [5]. With this package, a user can define vectors and matrices as part of
the language as well as use the standard operations defined for these objects, such as
matrix addition, matrix multiplication, and inversion.

There are four main ideas that we will use from object-oriented programming: 1)
abstraction, 2) classes and objects, 3) inheritance, and 4) polymorphism. We do not
seek to give a full description of object-oriented programming, but merely to provide
enough background material to discuss the new optimization classes. For a fuller
description of object-oriented programming see [2, 10, 27].

The idea of abstraction in software design is an old one. In its most general
form, abstraction means the ability to isolate information pertaining to a particular
software design. In procedural programming for example, the idea of abstraction
has led to the concept of modular programming. In object-oriented programming
this idea is taken further through the introduction of abstract data types. For the
purposes of this paper we will define an abstract data type as a user-defined extension
to an existing language type. It will usually consist of a set of data structures and a

4

collection of operations that can manipulate those data structures. Through the use
of abstraction, code will hopefully be more robust since details of data structures and
the algorithms that manipulate them are isolated from the user.

The next concept that is useful is that of a class. A class is a user-defined data
type that allows for data hiding. A class typically consists of both a data structure
and a group of subroutines that can manipulate these data structures. The data inside
the structure is hidden from the user in that the only way to access it is through the
subroutines defined as part of the class. In this manner, the user does not need to
know about the particular implementation of the class but can concentrate on the
use of it. An object is then just a particular instance of a class. The analogy in a
procedural language is that of a variable being a particular instance of a pre-defined
type such as an integer.

An overworked but simple example is that of a complex data type. In this example,
we could define a class called complex that consists of a pair of existing language
types, for example, two floats. A better example is that of a class called Vector
that could be defined as an array of floats together with an int that defines the size
of the vector. The difference between the class Vector and an array which already
exists in most languages is that we can now define operations that can be used with
these objects. Thus we could define vector addition using the standard “+” operator
between two Vectors of the same size.

Inheritance allows for easy extension of capabilities and is perhaps the most im-
portant new concept after that of the class. The idea behind inheritance is that a new
class can be defined using a previously defined class as a template. In the terminology
of OOP the template is called the base class and the new class is derived from the
base class by adding new features to it. One of the advantages of inheritance is that
all of the algorithms defined as part of the old class are still valid for the new class.
This results in more reusable code since it is not necessary to rewrite this portion of
the algorithm for the derived classes.

The last concept we will discuss is called polymorphism. In C++, it is possible to
have a pointer to a function that will perform different actions depending on what class
it belongs to. In this way, it is possible to defer an algorithmic design decision until
it is required. In the OOP terminology, these functions are called virtual functions.
If a class contains virtual functions then it is called an abstract class. The reason for
this distinction is that an abstract class can never be used to create an object, it can
only be used as a base class for other derived classes.

We will take a slightly different approach by making a distinction between non-
linear problems and the methods used to solve these problems. The rationale for this
decision is that users seldom are aware of the intricacies of the various methods nor
should they need to become experts in numerical analysis. On the other extreme,
the developer of optimization algorithms usually does not care about the details of
how a problem is defined other than to know certain mathematical properties and
some general problem characteristics. By making a distinction between problems and

5

methods we can develop codes that will hopefully be used by both groups without
having to rewrite the class libraries every time a new problem is presented or a new
algorithm is developed.

The end-users of optimization algorithms are usually quite knowledgeable about
the problems they are trying to solve. However, this information usually pertains
to the physical problem or to the algorithmic details of the computer model. For
instance, the user will know the dimension of the problem, whether analytic first or
second derivatives are available, and a general idea about the cost of a function eval-
uation. The developer of optimization algorithms on the other hand, would usually
like to know more about the mathematical properties of the problem as well as any
special structure that might be exploited. For example, a developer might ask any or
all of the following questions:

• How smooth is the function? Is the function C0, C1, C2, etc.?

• Does the objective function have any special properties, for example, is it a
linear function, a quadratic function, etc.?

• Is this a large dimensional problem?

• Is there any other special structure to the problem? For example, is this a
partially separable problem?

• How many digits of accuracy does the objective function have? How many
digits of accuracy does the derivative function have?

• Is the Hessian matrix sparse or dense?

• Is the objective function expensive to compute?

To consider the first property only, available optimization algorithms could be
classified according to the amount of smoothness assumed in the objective function.
For example, if the function is C2 (twice continuously differentiable), then one could
use a Newton method. However, if the function is only continuous, then one would
probably use a direct-search method. For most users it may be difficult to prove how
much continuity the objective function has and therefore they may not be able to
pick the most appropriate method. What is more likely is that a user will use the
first available optimization software or the easiest one to use among several, usually
with mixed results.

It seems appropriate then to define nonlinear problems from the point of view of
the user. On the other hand, optimization method classes should be defined from the
point of view of the developer, as there is a great deal of similarity between various
algorithms. In the rest of this section, we propose such a division and discuss a set
of C++ classes for each one of these two cases.

6

NLP0

int dim

ColumnVector xc

void *Data

double fvalue

double Evalf()

virtual void Eval()

NLP1
ColumnVector Grad

EvalG()

NLP2
SymmetricMatrix Hessian

EvalH()

Figure 1: Nonlinear problem classes

3.2 Nonlinear Problem Classes

One of the first questions that arises is the degree of continuity in the objective func-
tion. This information may not be readily available, but what is clear is the availabil-
ity of analytic derivatives. As such we’ve chosen to classify nonlinear programming
problems by the availability of functions for computing the derivatives:

NLP0 – No derivative information available
NLP1 – Analytic first derivatives available
NLP2 – Analytic first and second derivatives available

In Figure 3.2, we present one implementation of a nonlinear problem class. The
first class we define is called NLP0 for NonLinear Problem C0. This class contains
information common to all problems including: 1) the problem dimension, 2) a current
point, 3) a function value, and 4) a function to evaluate the objective function.

The class NLP1 is derived from the base class NLPO by adding a member for
the gradient and a function to evaluate the gradient. Likewise, the class NLP2 is
derived from NLP1 by adding the necessary information to compute and store the
Hessian. By using inheritance we can take advantage of the code that is already
written at the lower levels.

We do not intend that these base classes cover every nonlinear problem. Instead,
these classes should be viewed by the user as templates for new classes that contain
the specific details of their own application problem. Since the optimization method
classes described below will use the base classes, the optimization algorithms will still
work with the new user classes without having to be rewritten.

7

In our implementation of the optimization classes, we have defined the functions
that evaluate the objective function, gradient, and Hessian as virtual functions. As we
mentioned in the previous section, this means that the NLP0-2 classes are abstract
classes and can only be used as base classes for other classes. This allows us to
defer the definition of how the function, gradient, and Hessian are actually computed
so that users can create their own definitions. In essence, the base classes contain
placeholders for the codes that will be called to compute the objective function.

As part of the OPT++ implementation we provide 3 classes derived from NLP0-
2 called respectively NLF0-2 that have a particular calling sequence to the required
functions. These classes can be used to solve some simple optimization problems or
can be used as templates for more sophisticated objective functions. In Section 4, we
will give some examples using the NLF classes to demonstrate some of the features
of our class libraries.

Finally, there are situations where a user may want to use first-order information
without supplying analytic gradients. In this situation, OPT++ can automatically
provide derivatives through a finite-difference calculation. This case is handled sepa-
rately through the FDNLF1 class that has been derived from the NLP0 class.

3.3 Optimization Method Classes

There are many classifications possible for optimization algorithms, but most well-
known methods can be grouped into one of three classes:

1. Direct Search methods - any method that does not require or use any first order
information.

2. Conjugate gradient like methods - methods based on the conjugate gradient
method.

3. Newton like methods - methods that use both derivative and second order in-
formation to build a quadratic model.

For example, methods such as the Nelder-Mead simplex method, the box method, the
parallel direct search method, and pattern search methods fall into the direct search
class. The nonlinear conjugate gradient method and limited memory BFGS meth-
ods fall into the Conjugate Gradient class. Finally the Newton class, could include
methods such as finite-difference Newton, quasi-Newton methods, and inexact New-
ton methods. A simple taxonomy for some popular algorithms is given in Figure 3.3
as an example.

Based on this classification, we have implemented C++ classes for several methods
including: 1) a Newton method, 2) a finite-difference Newton method, 3) a Quasi-
Newton method, and 4) a nonlinear conjugate gradient method, 5) a parallel direct
search method, 6) a generating search set method, and 7) a nonlinear interior point

8

OPTIMIZE

Direct CG Like Newton Like

PDS GSS CG LBFGS QNewton Newton FD Newton NIPS

Figure 2: Optimization method hierarchy

method. In Figure 3.3, we present the class hierarchy for two of the implemented
methods.

The base class, called Optimize consists of information that is required by all
optimization classes. We note that once again we have used the concept of polymor-
phism through the use of the virtual function optimize(). This function is intended
to be a placeholder for the actual function that will perform the optimization. Since
each method class will have its own algorithm for computing the minimum of a func-
tion, it is not necessary to define it in the base class. However, it is important to
define the interface at this point since it is common to all of the derived classes.

The next two classes OptQNewtonLike and OptCGLike are derived from the
Optimize class. The major difference between these two classes is that the Newton-
like classes require extra storage for the Hessian matrix. Finally, the last two classes
OptQNewton and OptCG constitute the actual optimization methods. It is these
two classes that define the optimization algorithms specific to each method. In the
case of the OptQNewton class, the algorithm consists of a Quasi-Newton method
with a BFGS update formula for the Hessian. The OptCG class implements a
nonlinear conjugate gradient method.

As an example of the re-usability of object-oriented codes, all of the linear algebra
is handled through the use of the matrix package developed by Davies [5], with
some minor enhancements for the matrices that arise in the optimization algorithms.
In addition, all of the optimization methods use the same line searches, a simple
backtracking scheme and another one that is based on the algorithm by More and
Thuente [19]

3.4 Constraints

Is the constrained optimization case a sub-class of the unconstrained optimization
case or is a constrained optimization problem an unconstrained problem that hap-

9

OptQNewton

NLP1 *nlp

void optimize()

int CheckConv()

OptCG

NLP1 *nlp

void optimize()

int CheckConv()

OptQNewtonLike

ColumnVector gprev

SimmetricMatrix Hessian

int grad evals

virtual void optimize()

virtual int CheckConv()

OptCGLike

ColumnVector gprev

int grad evals

virtual void optimize()

virtual int CheckConv()

Optimize

int dim

TOLS *tol

double fprev, steplength

int ret code, iter taken, fcn evals

virtual void optimize() = 0

virtual int CheckConv() = 0

©©©©©©©©©©©

HHHHHHHHHHH

Figure 3: Optimization method classes

10

pens to have constraints? In the OOP terminology, this is the “inheritance” versus
“composition” question, which has implications in the implementation of new classes.
In composition or containment, class B is a member of class A. Membership is also
known as “has-a” relationship.

We view a constrained nonlinear problem as an unconstrained problem that has
constraints. We implement constraints in this manner to prevent code replication
and to preserve the inheritance hierarchy in the nonlinear problem classes. From a
code developer’s point of view, advantages to this approach are that we only have to
add a pointer to a constraint object and constraint accessor methods to the existing
nonlinear problem classes.

In Figure 4, we present the Constraint class hierarchy. From the ConstraintBase
class, we derive BoundConstraint, LinearConstraint, NonLinearConstraint
and CompoundConstraint classes.

Constraint Base

Bound Constr. Linear Constr. Nonlinear Constr. Compound Constr.

Linear Equation Linear Inequality Nonlinear Equation Nonlinear Inequality

Figure 4: Constraint method hierarchy

• BoundConstraint – defines upper and lower bounds on real-valued variables;

• LinearConstraint – an abstract class, which provides common data and func-
tionality to classes LinearEquation and LinearInequality;

• NonlinearConstraint – an abstract class, which provides common data and
functionality to classes NonLinearEquation and NonLinearInequality.

The following pure virtual functions are declared in ConstraintBase: evalResidual,
evalGradient, evalHessian, getUpper getLower, getConstraintValue, getNumOfCons,
amIFeasible. A pure virtual function is a function that has not been defined in the
base class; see [10]. To prevent compile-time errors, each derived class must provide
a definition for the pure virtual function.

The class LinearConstraint is derived from ConstraintBase by adding mem-
bers for the coefficient matrix A, the matrix-vector product Ax, lower and upper
bounds, and a flag to determine whether the constraint is written in standard form.
The derived classes of LinearConstraint, LinearEquality and LinearInequality,

11

ConstraintBase

virtual ColumnVector evalResidual(const ColumnVector & xc)

virtual Matrix evalGradient(const ColumnVector & xc)

virtual Matrix evalHessian(const ColumnVector & xc)

virtual int getNumOfConstr()

virtual bool amIFeasible()

virtual ColumnVector getLower()

virtual ColumnVector getUpper()

CompoundConstraint

OptppArray<Constraint> constraints

int NumOfSets()

ColumnVector lower

ColumnVector Upper

Figure 5: Constraint object classes

differ in the implementation of evalResidual, evalGradient, evalHessian, and amIFea-
sible functions. Similarly, the NonLinearConstraint class is derived from Con-
straintBase by adding a pointer to a NLP object. Like the objective function, the
nonlinear constraint functions are classified according to the availability of derivative
information. However, the argument list of the constructors for the two objects differ
in the storage types for the function’s value, gradient, and Hessian.

In OPT++, the standard form for a constrained nonlinear programming problem
is

min f(x)
s.t. Aex = be,

Aix ≥ bi,
h(x) = 0,
g(x) ≥ 0,
l ≤ x ≤ u,

(3)

where f(x), hi(x), gi(x) are nonlinear functions and Ae and Ai are real-valued linear
coefficient matrices. A naive implementation of constrained optimization would lead
to a combinatorial explosion of algorithms to solve for example, bound-constrained,
linear equality constrained, nonlinear constrained, as well as bound and linear equality
constrained problem formulations.

To simplify the use of mixed constraint sets in OPT++, we create a Com-
poundConstraint class. A CompoundConstraint is an array of heterogenous
constraints. Construction of the CompoundConstraint class eliminates the need
to implement different versions of optimization algorithms based on constraint type.
The design of CompoundConstraint places the burden of properly managing the
constraints on the algorithm developer. In this design, separate treatment of con-
straint classes is hidden from the user.

12

The class CompoundConstraint is derived from ConstraintBase by adding a
member for an array of constraints, a counter of the number of constraint sets in the
problem formulation, as well as comparison and insertion sort functions. Without
loss of generality, inside the CompoundConstraint constructor, the constraints
are sorted so that equality constraints are followed by inequality constraints. Why?
Optimization algorithms may treat categories of constraints differently. If constraints
are pre-sorted, the optimization algorithm does not have to continually query about
constraint type.

Currently, OPT++ does not support sparse constraints. Therefore, a bound must
be given for each constraint even if only a subset of the constraints have finite bounds.
An infinite lower bound is specified by setting

li ≤ −1010.

Similarly, an infinite upper bound is specified by

ui ≥ 1010.

3.5 Parallel Optimization Methods

One approach to mitigating the high computational cost of the functions targeted
by OPT++ algorithms is to take advantage of the availability of multiple proces-
sors. In order to enable this capability, parallel versions of some of the OPT++
algorithms have been implemented using MPI [7]. The parallelism in OPT++ cur-
rently takes the form of coarse-grained parallelism, and in particular, it consists of
the ability to perform multiple function evaluations simultaneously. This is particu-
larly advantageous when finite-difference gradient approximations are needed or when
derivative-free methods are used, both of which are common in simulation-based op-
timization. Below we describe in more detail how the algorithms in OPT++ make
use parallelism.

When an analytic gradient is not available, the gradient-based algorithms in
OPT++ must approximate it using finite-difference computations. When each func-
tion evaluation requires the execution of an expensive simulation, the cost of solving
the optimization problem can very quickly become prohibitive. One approach to ad-
dressing this problem was introduced by Byrd, Schnabel, and Shultz in 1988 [4]. They
suggest a straightforward way to take advantage of multiple processors when using a
line search method with finite-difference gradients. In particular, extra processors are
used to compute components of the finite difference gradient at the trial point while
the function is being evaluated at that point. This is referred to as a speculative gra-
dient computation, and the idea applies equally well to any gradient-based algorithm.
Figure 6 shows the flow of a generic gradient-based optimization algorithm with the
speculative gradient modification. Once particularly nice feature of note is that while
this approach clearly leads to substantial computational savings, there is no penalty
when the trial point is not accepted.

13

Figure 6: While the function is being evaluated at the trial point, the remaining
p− 1 processors are used to calculate up to p− 1 components of the finite difference
gradient. If the trial point is accepted, we already have p−1 components of the gradient
available and only need to calculate the remaining n− (p− 1) components, where n is
the dimension of the problem. If the trial point is not accepted, we simply try again
at the next trial point. Note that no time is lost because the function evaluation is
required regardless.

14

As an additional note, it is observed in [4] that it is possible to extend this idea to
using any additional processors to compute as many components of a finite-difference
Hessian as possible. In OPT++, however, we currently rely on other Hessian approx-
imation (e.g. BFGS). We plan to incorporate speculative Hessian evaluations in the
future.

Derivative-free optimization methods are also commonly used to solve simulation-
based optimization problems. They have the obvious advantage of not requiring a
gradient, but they are also robust when the accuracy of the function is low. One
of the derivative-free methods implemented in OPT++ is the parallel direct search
(PDS) algorithm of Dennis and Torczon [6]. Direct search can be briefly described
as follows. Starting from an initial simplex, S0, the function value at each of the
vertices in S0 is computed and the vertex corresponding to the lowest function value,
v0, is determined. Using an underlying grid structure, S0 is reflected about v0 and
the function values at the vertices of this rotation simplex, Sr, are compared against
the function value at v0. If one of the vertices in Sr has a function value less than the
function value corresponding to v0, then an expansion step to form a new simplex,
Se, is attempted in which the size of Sr is expanded by some multiple, usually 2.
The function values at the vertices of Se are compared against the lowest function
value found in Sr. If a lower function value is encountered, then Se is accepted as the
starting simplex for the next iteration; otherwise Sr is accepted for the next iteration.
If no function value lower than the one corresponding to v0 is found in Sr, then a
contraction simplex is created by reducing the size of S0 by some multiple, usually
1/2, and is accepted for the next iteration.

Because PDS only uses function comparisons, it is easy to implement and use.
Furthermore the rotation, expansion, and contraction steps are all well determined,
so it is possible to pre-compute a set of grid points corresponding to the vertices of
the simplices constructed from various combinations of rotations, expansions, and
contractions. An example of such a scenario is shown in Figure 7. It is at this point
where the introduction of parallelism becomes obvious and advantageous. Given this
set of grid points, called a search scheme, each vertex can be assigned to a different
processor thus allowing the function values at multiple vertices to be computed simul-
taneously. Hence the “parallel” in PDS. Once the function has been evaluated at all
of these vertices, the one corresponding to the lowest function value can be identified,
and the algorithm can move on to the next set of vertices.

The final OPT++ algorithm that leverages the simultaneous function evaluation
capability is Trust Region-Parallel Direct Search (TRPDS) algorithm developed by
Hough and Meza [11]. TRPDS employs the standard trust-region framework, but
uses PDS to solve a non-standard subproblem to compute the step at each iteration.
An example iteration of the TRPDS algorithm is shown in Figure 8. Since TRPDS
has both gradient-based and derivative-free stages in the algorithm, it makes use
of simultaneous function evaluations in both of the manners described above. The
minor exception is that TRPDS does not currently support a speculative gradient

15

Figure 7: This figure shows a set of vertices that have been pre-computed by consid-
ering various combinations of reflections, expanasions, and contractions around the
current iterate. Only the function value is required at each point, and the evaluations
are independent of each other, so each vertex can be assigned to a different processor.

evaluation, though it does perform the finite-difference calculation in parallel. We
plan to incorporate a speculative capability in the future.

We close this section with a few notes about our future plans. As mentioned
earlier, the parallelism in OPT++ is currently coarse-grained parallelism in the form
of simultaneous function evaluations. There are, however, other levels at which par-
allelism can be introduced. One that we intend to address is parallelism in the linear
algebra. The problems that OPT++ has typically been used for in the past have had
a small number of optimization parameters, so parallelism in the linear algebra has
not been necessary. As OPT++ receives more use on large-scale problems, such as
protein folding, it will become increasingly important to reduce the amount of time
spent in the linear algebra. The other form of parallelism we intend to accommodate
is parallelism within a single function evaluation. For simulation-based optimization
problems, it is often the case that the simulation itself can be executed in parallel.
While this can be done now through the clever use of system calls and function wrap-
pers, it can be a tricky process with the onus on the user. We intend to incorporate
this capability into OPT++ so that the user need only specify how much parallelism
is required at each level.

16

Figure 8: Overview of the TRPDS algorithm. The point xCP is the Cauchy point, xN

is the Newton point, and xC is the current point. These points are used to initialize
the simplex over which PDS approximately minimizes the function. The solid circle
represents the trust region. The step length is allowed to be twice the size of the
trust region (dotted circle) to allow for the possibility of taking a step longer than the
Newton step.

17

3.6 Regression Testing

Test problems are an important element of computational algorithm development,
not only as a tool to assess implementation correctness, but also in performance
comparison among competing algorithms.

OPT++ includes several regression tests that are run to ensure software reliability
during the course of development. These include testing the optimizations algorithms
using problems from the Hock-Schittkowski collection, problems from the MINPACK2
suite, as well as tests that are aimed at ensuring the integrity of the base components
of OPT++, such as the constraint and NLP classes. These tests are run daily as
part of an automatic regression testing script that compiles and archives the results
and test logs. In the case of a failure of any of the tests an email is automatically
generated and sent to the OPT++ software development team. Through this process,
we have been able to detect bugs and correct them quickly and more efficiently.

Recently, all of the Schittkowski test problems for nonlinear programming were
added into the testing environment of OPT++. This collection consists of over 300
problems designed to test various aspects of nonlinear optimization codes. The Schit-
tkowki test problem collection was incorporated into OPT++ via an object- oriented
library described in [13]. One of the featrures of this library is that it allows the de-
velopment team to use this large collection of problems as a database. For example,
one can query the test problems for specific attributes such as problem dimension,
number of constraints, type of constraints (bound, inequality, equality), and availabil-
ity of derivatives. This permits an efficient selection of the appropriate test problems
for the algorithm being tested. The code in Figure 9 displays an example of a test-
ing routine for the LBFGS algorithm by selecting all unconstrained problems having
dimension larger than 10.

4 Applications

4.1 Example Code

To illustrate some of the concepts, we now present several examples that solve a
small nonlinear optimization problem using the optimization classes. The first two
test problems consist of Rosenbrock’s function,

min
x

100(x2 − x2
1)

2 + (1− x1)
2.

In the first example, we assume that first derivatives are not available. In the second
example, we asume that that first derivatives are available but that second derivatives
are not available. For the solution method, we will use a quasi-Newqton method that
employs a BFGS update formula for the Hessian.

Figures 10 - 11 display the source listings for the two sample problems. There are
three major sections in the example code: 1) the function definition, 2) the nonlinear

18

int main() {
int max id = 309;
for (int i=1, i< max id; i++) {

STPH tp(i);
if (tp.getDim()>10 && !tp.hasConstraints()) {
FDNLF1 nlp = tp.MakeFDNLF1();
OptLBFGS solver(&nlp);
solver.optimize();
int rc = solver.getRetCode();
if (rc > 0)

cout << ’’Test Problem ’’ << i << ’’ passed’’ << endl;
else

cout << ’’Test Problem ’’ << i << ’’ failed’’ << endl;
}

}

Figure 9: Sample testing code.

#include "NLF.h"
void rosenInit(int ndim, ColumnVector& x);
void rosen0Eval(int ndim, const ColumnVector& x,

double& fx, int& result);

int main() {
int ndim = 2; // problem dimesion

FDNLF1 nlp(ndim, rosen0Eval, rosenInit);

OptQNewton optobj(&nlp);

optobj.setMaxIter(1000);

optobj.optimize();

optobj.printStatus("status");

}

Figure 10: Unconstrained example, no derivatives.

19

#include "NLF.h"
void rosenInit(int ndim, ColumnVector& x);
void rosen1Eval(int ndim, const ColumnVector& x,

double& fx, ColumnVector& gx, int& result);

int main() {
int ndim = 2; // problem dimesion

NLF1 nlp(ndim, rosen1Eval, rosenInit);

OptQNewton optobj(&nlp);

optobj.setMaxIter(1000);

optobj.optimize();

optobj.printStatus("status");

}

Figure 11: Unconstrained example, function with first derivatives.

problem definition, and 3) the optimization method definition. In the first case, no
analytic derivatives are supplied by the function, so we allow OPT++ to compute
them via a finite-differnce approximation. This is encapsulated through the definition
of the problem as a FDNLF1. In the second example (see Figure 11), analytic first
derivatives are available, so we create an object of type NLF1. The corresponding
definition of the objective function is also modified to reflect the availability of first
derivatives. The two components needed to specify this object are the dimension
of the problem and a pointer to a function. In both cases the last step consists of
creating an optimization method object from the OptQNewton class. We then call
the member function optimize to do the actual optimization. Finally the solution is
printed using the printStatus member function.

We note that if the user would now like to try a different optimization method,
the procedure would consist of replacing the creation of the OptQNewton object
with a different method object, for example an OptCG object to try the nonlinear
conjugate gradient method.

The third example consists of the following constrained optimization problem
taken from the Hock and Schitkowski test set:

min
x

(x1 − x2
2)

2 + 1/9(x1 + x2 − 10)2 + (x3 − 5)2, (4)

subject to −4.5 ≤ x1 ≤ 4.5,

−4.5 ≤ x2 ≤ 4.5,

−5.0 ≤ x2 ≤ 5.0,

x2
1 + x2

2 + x2
3 ≤ 48.

20

#include "NLF.h"
#include "OptNIPS.h"
void hs ic(int ndim, ColumnVector& x);
void hs f2(int ndim, const ColumnVector& x,

double& fx, ColumnVector& gx, int& result);
void hs inq1(int ndim, const ColumnVector& x,

double& fx, ColumnVector& gx, int& result);

int main() {
int n = 3;

// Create Bound constraints
ColumnVector lower(n), upper(n);
lower << -4.5 << -4.5 << -5.0;
upper << 4.5 << 4.5 << 5.0;
Constraint boundc = new BoundConstraint(n,lower,upper);

// Nonlinear Inequality constraint
NLF1* inq nlf = new NLF1(n,1, hs inq1, hs ic);
NLP* inq nlp = new NLP(inq nlf);
Constraint inqc = new NonLinearInequality(inq nlp);

// Compounded constraint object
CompoundConstraint* constraints = new CompoundConstraint(inqc,boundc);

// Construct non-linear problem with constraints
NLF2 nips(n, hs f2, hs ic, constraints);

// Build the NIPS optimization object
OptNIPS objfcn(&nips, update model);

// Run optimization
objfcn.optimize();

// Write output
objfcn.printStatus("Parameters");
ostream* os = objfcn.getOutputFile();
nips.fPrintState(os, "Solution from NIPS");

objfcn.cleanup();

}

Figure 12: Constraints example.

21

4.2 Multi Material Heat Equation

The next example involves an inverse problem formulation of a problem in thermal
analysis. The objective is to find the parameters of a model that would produce a
known temperature field. This problem is representative of several problems that we
have worked on, including optimal control of a chemical vapor deposition furnace [17,
18], and a problem in parameter identification for an extreme ultraviolet lithography
lamp model.

For this problem, the objective function is defined as follows:

min
x

||T (x)− T ∗||2,

where T ∗ is a prescribed temperature field and T (x) is the solution to the heat equa-
tion

∂T

∂t
− κ∇2T = 0

with appropriate boundary conditions over a specified domain. For this example the
domain is the region [0, 3]× [0, 2], and each unit square within the domain represents
a different material with the boundary condition (fluxes) as indicated in figure 13.
We use a program that computes t he temperature on a regular mesh (of fixed size)
by solving the heat equation given three input variables corresponding to the three
fluxes. This temperature field is saved as T (x). In a real-world scenario the prescribed
temperature field T ∗ would originate from a physical experiment, but for the purposes
of this example T ∗ was generated numerically using a specific set of inputs parameters
x∗, namely T ∗ = T (x∗).

We then attempted to recover x∗ by solving (4.2). Since analytic derivatives were
not available, we used two direct search methods and compared the solution to two
gradient-based methods that used finite-difference gradients supplied by OPT++.
The results are presented in Tables 4.2 - 4.2. For the direct search methods we used
a step tolerance = 10−5 and a function tolerance = 10−4. For the gradient based
methods we used a function tolerance = 10−8, and a step size for the finite difference
gradient = 10−6.

The first direct search method used was PDS, the Parallel-Direct Search methods
of section ??. The second was GSS, or Generating Set Search method, using three
types of generating basis. In GSS2 we use the standard basis of size 2N , namely the
columns of {I,−I} where I is the identity. In GSS1 we use the standard basis of size
N + 1, namely {I,−1} where 1 is the vector with all entries equal to 1. In GSSa
and GSSb we augument the standard 2N basis with search directions that couple the
search directions in pairs and triplets, respectively.

To check the effects of the mesh size on the results we used meshes with two
different divisions per unit length (dpu), namely 8 and 16. Both meshes produced
consistents results, with the main differences being in the objective function value
at the solution (this is expected as the objective function depends on the size of the
mesh).

22

metal 1 metal 2 metal 3

insulator metal 4 insulator

- ¾

6

6

flux 1 flux 3

flux 2

convection

Figure 13: Multimaterial model problem.

23

Table 1: Comparison of direct search methods for the multimaterial problem.
dpu fevals f(x∗)n ||s||

PDS 16 1092 1.7264e-3 1.5259e-5
GSS2 16 1168 1.5125e-3 8.1739e-6
GSS1 16 3125 6.2097e-3 7.9511e-6
GSSa 16 1077 5.1055e-4 6.5979e-6
PDS 8 1156 6.3770e-4 3.0518e-5
GSS2 8 1483 5.1255e-3 8.5457e-6
GSS1 8 3125 6.2097e-3 7.8511e-6
GSSa 8 1077 1.2042e-4 6.5979e-6
GSSb 8 595 3.8313e-4 9.0622e-6

Table 2: Comparison of gradient based methods for the multimaterial problem.
dpu fevals f(x∗) ||g(x∗)||

QNewton 8 309 7.0871e-9 3.9285e-5
LBFGS 8 315 3.5252e-7 5.3536e-3

QNewton 16 287 1.7695e-8 7.3354e-5
LBFGS 16 623 2.2434e-7 2.8814e-3

Figure 14: Target temperature profile for multimaterial problem.

24

4.3 Protein Folding

In the final example we use OPT++ to minimize the AMBER potential energy of
a protein. AMBER is a prominent empirical energy model used in optimization
approaches to the problem of predicting the spacial configuration of a protein given its
sequence of amino acids, also know as the protein folding problem. All optimizations
approaches to this problem assume that the natural configuration of the protein
minimizes an energy potential, but the exact form of this energy is a current area of
research.

The AMBER model considers the distances ri between pairs of bonded atoms, the
angles θi between consecutives bonds, and the dihedral angles φi defined by sequences
of four bonded atoms, and assigns positive energies to the deviation from empirical
values for these parameters. In addition to these bonded interactions, AMBER in-
cludes terms for the electric potential energy and Lennard-Jones interactions between
pairs of non-bonded atoms. The form of the AMBER function can then be expressed
as:

EAMBER =

Nb∑
i=1

āi(ri − r̄i)
2 +

Na∑
i=1

b̄j(θi − θ̄i)
2 +

Nd∑
i=1

c̄i cos(m̄iφi − γ̄i)

+
N∑

i=1

N∑
j=i

[
q̄iq̄j

r2
ij

+

(
σ̄iσ̄j

rij

)6

+

(
σ̄iσ̄j

rij

)12
]

(5)

where the first three terms are the bonded interactions, with Nb the number of bonds,
Na the number of angles, and Nd the number of dihedral angles in the protein, and
where the last summation incorporates the interactions among pairs (i, j) of non-
bonded atoms, with rij denoting the distance between them. Quantities in (5) marked
with over-bar are predefined constants dependent on the specific atoms involved in
the interaction.

In this problem, a protein with N atoms is represented as a vector of length 3N
corresponding to the atom’s cartesian coordinates. Hence, typical problem sizes are
in the thousands, as real proteins are made up of hundreds of amino acids, each
with a dozen or so atoms. For some optimization methods, the size of this problem
can create difficulties, especially if they either store or solve a size N linear system
at each iteration. One method that is more adequate for large-size unconstrained
optimization problems is the limited memory BFGS algorithm, or LBFGS, which we
have recently incorporated into OPT++. In this method, information from only a
subset of M Hessian columns is kept at any iteration, with M << N . We have found
that a value of M ≈ 30 is adequate for proteins with a few thousand atoms.

Figure 15 contains the code to minimize AMBER for a 593 atom protein known
as 1e0m. The protein is encoded in pdb format, handled by our PDB.h library [22].
The user function amberInit() returns the starting point for the optimization, and
initializes global variables used by amberEval() to perform the energy computations.

25

In the main routine, we first load the pdb file for this protein, and initalize the problem
dimension to be three times the number of atoms. The energy function provides first
order derivatives, hence we construct a nonlinear problem of type NLF1, which we
then pass to the constructor of the OptLBFGS optimization object. Before running
the optimization, we adjust a few parameters with values more adequate for this
large-size problem. After the optimization call, the final status of the algorithm is
appended to the iteration output file. The second argument to printStatus() avoids
printing the final point (a very long vector). Instead, we obtain the final point from
the nlp object and save it in PDB format.

#include "OptLBFGS.h"
#include "PDB.h"
USERINITFCN amberInit();
USEREVALFCN amberEval();
PDB protein;

int main() {
protein.load("1e0m.pdb");
int natoms = protein.nofAtoms();
int ndim = 3 * natoms;

NLF1 nlp(ndim, amberEval, amberInit);
OptLBFGS optobj(ndim, nlp);

// adjust parameters
optobj.setMem(30);
optobj.setMaxIter(10000);
optobj.setFcnTol(1e-6);

optobj.optimize(); // optimization call

optobj.printStatus("status", false);
ColumnVector X = nlp.getXc();
protein.writepdb("final.pdb", X.Store());

}

Figure 15: Protein energy minimization code

In Figure 16 we show a plot of the value of the energy after each of the 7224
iterations of the optimization algorithm.

The initial and final configurations for the protein are shown in figures 17. Note
how minimizing the AMBER energy has effectively put the protein in a more compact
configuration.

26

0 1000 2000 3000 4000 5000 6000 7000 8000
−150

−100

−50

0

50

100

150

200

LBFGS iterations

A
M

B
E

R
 E

ne
rg

y

Figure 16: AMBER energy per LBFGS iteration.

5 Summary

In this report, we have presented a C++ class library for nonlinear optimization.
We have proposed that a clear distinction be made between nonlinear problems and
optimization methods. Based on this distinction, we have implemented a set of object-
oriented classes specifically suited to each case. In this way, we have been able to
develop a set of classes that address the important issues for both the users and the
developers of optimization algorithms. From the point of view of a user requiring
an optimization algorithm to solve a particular problem, these libraries have been
written so that they are easily used. From the point of view of someone developing
optimization algorithms, these classes have been designed so that new algorithms can
be easily incorporated into the existing framework.

We have several methods implemented for the three main classes of optimization
methods that we have described: 1) direct search methods, 2) conjugate gradient like
methods, and 3) Newton like methods. Future work will concentrate on incorporating
new algorithms. We are currently working on implementing new classes for large-
scale optimization. Since most of the popular methods for large-scale optimization
use variations of one of the methods already implemented, the extension to large-scale
problems should be straightforward. Finally, we note that the libraries presented in
this article should not be considered as a finished product. The true test will be the
usefulness of these class libraries for solving real-world applications.

27

Figure 17: Protein initial and final configurations.

28

References

[1] Brett M. Averick and Jorge J. More. User guide for the MINPACK-2 test problem
collection. Technical Report ANL/MCS-TM-157, Argonne National Laboratory,
1991.

[2] Timothy Budd. An Introduction to Object-Oriented Programming. Addison-
Wesley, Reading, MA, 1991.

[3] David M. Butler. Fundamentals of object-oriented programming. Limit Point
Systems, Fremont CA, 1992.

[4] R. H. Byrd, R. B. Schnabel, and G. A. Shultz. Parallel quasi-newton methods
for unconstrained optimization. Mathematical Programming, 42:273–306, 1988.

[5] R. B. Davies. NEWMAT, C++ Matrix Library - a short introduction.
http://www.robertnz.net/nmintro.htm, 2003.

[6] J. E. Dennis, Jr. and V. Torczon. Direct search methods on parallel machines.
SIAM J. Opt., 1(4):448–474, 1991.

[7] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming
with the Message-Passing Interface. The MIT Press, Cambridge, Massachusetts,
1994.

[8] Hock, W., Schittkowski, K. (1981): Test Examples for Nonlinear Program-
ming Codes, Lecture Notes in Economics and Mathematical Systems,Vol. 187,
Springer-Verlag

[9] M. S. Gockenbach, M. J. Petro, and W. W. Symes. C++ Classes for Linking
Optimization with Complex Simulations. ACM Trans. Math. Soft., 25(2), pp
191-212, 1999.

[10] Allen I. Holub. C+ C++ Programming With Objects in C and C++. McGraw-
Hill, New York, NY, 1992.

[11] P. D. Hough and J. C. Meza. A class of trust-region methods for parallel opti-
mization. SIAM J. Optim., 13(1):264–282, 2002.

[12] V. E. Howle, S. M. Shontz, and P. D. Hough. Some Parallel Extensions to Opti-
mization Methods in OPT++. Sandia National Laboratories Technical Report
SAND2000-8877, October 2000.

[13] J.C. Meza and R.A. Oliva. An object oriented library to manage the collection
of Schittkowski test problems for nonlinear optimization. Lawrence Berkeley
National Laboratory Technical Report LBNL-53685, 2003

29

[14] J.C. Meza. OPT++: An Object Oriented Class Library for Non-linear Opti-
mization. Sandia National Laboratories, Technical Report 94-8225, 1994

[15] J.C. Meza, R.S. Judson, T.R. Faulkner, and A.M. Treasurywala, A Compar-
ison of a Direct Search Method and a Genetic Algorithm for Conformational
Searching. Journal of Computational Chemistry, Vol. 17, No. 9, pp. 1142-1151,
1996.

[16] J.C. Meza and M.L. Martinez. Direct Search Methods for the Molecular Con-
formation Problem. Journal of Computational Chemistry, Vol. 15, No. 6, pp.
627-632, 1993.

[17] J.C. Meza and T.D. Plantenga. Optimal Control of a CVD Reactor for Prescribed
Temperature Behavior. Sandia National Laboratories, Technical Report 95-8222,
1995.

[18] C.D. Moen, P.A. Spence and J.C. Meza. Optimal Heat Transfer Design of Chem-
ical Vapor Deposition Reactors. Sandia National Laboratories, Technical Report
95-8223, 1995.

[19] Jorge J. More and David J. Thuente. Line search algorithms with guaranteed
sufficient decrease. Technical Report MCS-P330-1092, Argonne National Labo-
ratory, 1992.

[20] Jorge J. More and Stephen J. Wright. Optimization Software Guide. SIAM
Press, Philadelphia, PA, 1993.

[21] Dave Nichols, Geoff Dunbar, and Jon Claerbout. The C++ language in physical
science. In OON-SKI ’93, pages 339–353, April 1993. Proceedings of the First
Annual Object-Oriented Numerics Conference.

[22] R.A. Oliva. An Object-Oriented Library for Molecular Dynamics Energy Com-
putations. Lawrence Berkeley National Laboratory Technical Report LBNL-
XXXXX, 2003

[23] E. M Gertz and S. J. Wright. Object-Oriented Software for Quadratic Program-
ming. ACM Trans. Math. Soft., 29(1), pp 58-81, 2003.

[24] K. Schittkowski. More Test Examples for Nonlinear Program-ming. Lecture
Notes in Economics and Mathematical Systems, Vol. 282, Springer-Verlag, 1987.

[25] K. Schittkowski Test Examples for Nonlinear Programming User’s Guide, Online
at http://www.klaus-schittkowski.de, 2002

[26] Ronald Schoenberg. An object-oriented design of an optimization module. In
OON-SKI ’93, pages 132–139, April 1993. Proceedings of the First Annual
Object-Oriented Numerics Conference.

30

[27] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,
Massachusetts, 1987.

[28] S. J. Benson, L. Curfman McInnes, and J. J. More. A Case Study in the Per-
formance and Scalability of Optimization Algorithms. ACM Trans. Math. Soft.,
27(3), pp 361-376, 2001.

31

